scholarly journals Introduction to Orthonormal Wavelet Analysis with Shift Invariance: Application to Observed Atmospheric Blocking Spatial Structure

2000 ◽  
Vol 57 (23) ◽  
pp. 3856-3880 ◽  
Author(s):  
Aimé Fournier
Author(s):  
TOMONARI YAMAGUCHI ◽  
MITSUHIKO FUJIO ◽  
KATSUHIRO INOUE

Time-frequency analysis methods such as wavelet analysis are applied to investigate characteristic from non-stationary signals. In this study, we proposed redundant morphological wavelet analysis that was a kind of nonlinear discrete wavelet and redundant wavelet. This method analyzes a transition of shape information from signals in detail since this method keeps property of shift invariance though information of decomposition includes redundancy. Local pattern spectrum which corresponds to nonlinear short time Fourier transform is derived from this nonlinear wavelet. The characteristics of these methods were confirmed by applying to simulation data and actual data.


1991 ◽  
Vol 8 (1-4) ◽  
pp. 101-115 ◽  
Author(s):  
Michio Yamada ◽  
Koji Ohkitani

2005 ◽  
Vol 18 (13) ◽  
pp. 2151-2171 ◽  
Author(s):  
Aimé Fournier

Abstract A new wavelet energetics technique, based on best-shift orthonormal wavelet analysis (OWA) of an instantaneous synoptic map, is constructed for diagnosing nonlinear kinetic energy (KE) transfers in five observed blocking cases. At least 90% of the longitudinal variance of time and latitude band mean 50-kPa geopotential is reconstructed by only two wavelets using best shift. This superior efficiency to the standard OWAs persists for time-evolving structures. The cases comprise two categories, respectively dominated by zonal-wavenumber sets {1} and {1, 2}. Further OWA of instantaneous residual nonblocking structures, combined with new “nearness” criteria, yields three more orthogonal components, representing smaller-scale eddies near the block (upstream and downstream) and distant structures. This decomposition fulfills a vision expressed to the author by Saltzman. Such a decomposition is not obtainable by simple Fourier analysis. Eddy patterns apparent in the components’ contours suggest inferring geostrophic energetic interactions, but the component Rossby numbers may be too large to support the inference. However, a new result enabled by this method is the instantaneous attribution of blocking strain-field effects to particular energetically interactive eddies, consistent with Shutts’ hypothesis. Such attribution was only possible before in simplified models or in a time-average sense. In four of five blocks, the upstream eddies feed KE to the block, which in turn, in three of four cases, transmits KE to the downstream eddies. The small case size precludes statistically significant conclusions. The appendixes link low-order blocking structure and dynamics to some wavelet design principles and propose a new interaction diagnosis, similar to E-vector analysis, but instantaneous.


1967 ◽  
Vol 31 ◽  
pp. 45-46
Author(s):  
Carl Heiles

High-resolution 21-cm line observations in a region aroundlII= 120°,b11= +15°, have revealed four types of structure in the interstellar hydrogen: a smooth background, large sheets of density 2 atoms cm-3, clouds occurring mostly in groups, and ‘Cloudlets’ of a few solar masses and a few parsecs in size; the velocity dispersion in the Cloudlets is only 1 km/sec. Strong temperature variations in the gas are in evidence.


1997 ◽  
Vol 36 (04/05) ◽  
pp. 356-359 ◽  
Author(s):  
M. Sekine ◽  
M. Ogawa ◽  
T. Togawa ◽  
Y. Fukui ◽  
T. Tamura

Abstract:In this study we have attempted to classify the acceleration signal, while walking both at horizontal level, and upstairs and downstairs, using wavelet analysis. The acceleration signal close to the body’s center of gravity was measured while the subjects walked in a corridor and up and down a stairway. The data for four steps were analyzed and the Daubecies 3 wavelet transform was applied to the sequential data. The variables to be discriminated were the waveforms related to levels -4 and -5. The sum of the square values at each step was compared at levels -4 and -5. Downstairs walking could be discriminated from other types of walking, showing the largest value for level -5. Walking at horizontal level was compared with upstairs walking for level -4. It was possible to discriminate the continuous dynamic responses to walking by the wavelet transform.


Sign in / Sign up

Export Citation Format

Share Document